

November 2019

PRODUCT/PROCESS CHANGE INFORMATION

PCI AMS/19/11931

Analog, MEMS & Sensors Group (AMS)

Introduction of a new Rough Lead frame for VFDFPN 4x4 8L package assembled in Carsem Malaysia

WHAT:

ST is pleased to announce the introduction of a Rough Lead frame (pre-plated NiPdAuAg) for products assembled in VFDFPN 4x4 8L. The rough texture will enhance adhesion between the Epoxy molding compound and the metal finish of the lead frame and improve the mechanical stability of the package.

Please note that the implementation of this rough Lead frame can be considered as a minor change as it will NOT **affect the internal structure of the lead-frame** (same form, fit, internal design and function),

Impacted Product(s): LED2000PUR, LED2001PUR, ST1CC40PUR, ST1L05DPUR, ST1S10PUR, ST1S30IPUR, ST1S32PUR, ST1S40IPUR, ST1S41PUR, ST8R00WPUR

Material	Current process	Modified process		
Diffusion location	No ch	nange	No change	
Assembly location	CARSEM S - MALAYSIA	CARSEM S - MALAYSIA	No change	
Molding compound	g compound Epoxy Epoxy		No change	
Die attach	Ероху	Ероху	No change	
Lead-frame	Smooth Lead frame Ni/Pd/Au	Rough Lead frame Ni/Pd/Au/Ag	Enhanced adhesion between lead frame surface & molding compound but no change of form, fit, internal design and function	
Wire	Gold 1.3 mil	Gold 1.3 mil	No change	
Plating	NiPdAu	NiPdAuAg	The new LF is more opaque com- pared with old frame. See below photo as reference	
MSL	1	1	No change	

Please find more information related to the change in the table here below :

Current lead-frame

Modified lead-frame

WHY:

The rough texture will enhance adhesion between the Epoxy molding compound and the metal finish of the lead frame and improve the mechanical stability of the package.

November 2019

HOW:

The qualification program consists mainly of comparative electrical characterization and reliability tests on the selected Test Vehicle ST1S40IPUR.

You will find here after the Reliability Evaluation Report which summarizes the various test methods and conditions that ST used for this qualification program.

WHEN:

This new rough Lead-frame will be implemented from January 2020.

Marking and traceability:

Unless otherwise stated by customer's specific requirement, the traceability of the parts assembled with the new material set will be ensured by new internal sales type, date code and lot number.

The changes here reported will not affect the electrical, dimensional and thermal parameters keeping unchanged all the information reported on the relevant datasheets. There is -as well- no change in the packing process or in the standard delivery quantities.

APPENDICES:

Reliability Evaluation Report

General Purpose Analog & RF Division

REL.W.6088-876-2019

Power Management

Quality and Reliability

Reliability Evaluation Report

Introduction of a Rough Lead frame for ST1S40IPUR in VFDFPN 4x4x1.0 8L assembled in CARSEM S - MALAYSIA

General In	formation	Locations		
Product Lines Product Description P/N	UA2701 DC-DC CONVERTERS <i>ST1S40IPUR</i>	Wafer fab	CHAF- GLOBALFOUNDRIES Fab2	
Product Group	AMS (Analog MEMS & Sensor Group) General Purpose Analog & RF	Assembly plant	CARSEM S - MALAYSIA	
Product division Package Silicon Process technology	<i>Division POWER MANAGEMENT VFDFPN 4x4x1.0 8L BCD6S</i>	Reliability Lab	Catania Reliability LAB	

DOCUMENT INFORMATION

Version	Date	Pages	Prepared by	Approved by	Comment
1.0	November 2019	6	Antonio Russo	Sergio Spampinato	Final Report

General Purpose Analog & RF Division

REL.W.6088-876-2019

Power Management

Quality and Reliability

TABLE OF CONTENTS

1	APPLICABLE AND REFERENCE DOCUMENTS	.3
2	RELIABILITY EVALUATION OVERVIEW	.3
2.	1 OBJECTIVES	.3
2.	1 CONCLUSION	.3
3	CHANGE DESCRIPTION	.4
4	CONSTRUCTION NOTE	.4
5	TESTS RESULTS SUMMARY	.5
	5.1 TEST VEHICLE	.5 .5
6	ANNEXES	.5 5
	PLEASE REFER TO PRODUCT DATASHEET	.5
7	TEST DESCRIPTION	.6

General Purpose Analog & RF Division

REL.W.6088-876-2019

Power Management

Quality and Reliability

<u>1</u> APPLICABLE AND REFERENCE DOCUMENTS

Document reference	Short description		
JESD47	Stress-Test-Driven Qualification of Integrated Circuits		

2 RELIABILITY EVALUATION OVERVIEW

2.1 OBJECTIVES

To qualify the new rough Lead Frame for ST1S40IPUR in VFDFPN 4x4x1.0 8L assembled in CARSEM S – MALAYSIA. Qualification activity have been performed by using three different assembly lots as requested by JEDEC JESD47 for these types of changes.

2.1 CONCLUSION

Qualification Plan requirements have been fulfilled without issue. It is stressed that reliability tests have to show that the devices behave correctly against environmental tests (no failure). Moreover, the stability of electrical parameters during the accelerated tests have to demonstrate the ruggedness of the products and safe operation, which is consequently expected during their lifetime.

General Purpose Analog & RF Division

Power Management

REL.W.6088-876-2019

Quality and Reliability

3 CHANGE DESCRIPTION

Qualification of new rough Lead frame for ST1S40IPUR in VFDFPN 4x4x1.0 8L assembled in CARSEM S – MALAYSIA.

4 CONSTRUCTION NOTE

	UA2701 - ST1S40IPUR
Wafer/Die fab. Information	
Wafer fab manufacturing location	CHAF-GLOBALFOUNDRIES Fab2
Technology	BCD6S
Die finishing back side	Cr/NiV/Au
Die size	1725 x 1840 um
Passivation type	TEOS/SiN/Polyimide
Assembly information	
Assembly site	CARSEM S - MALAYSIA
Package description	VFDFPN 4x4x1.0 8L
Mold Compound	Ероху
Frame	MLPDHS-4X4-8L-128X096-C194-8-NiPdAuAg
Die attach	Ероху
Bond Wire	1.3 mils AU

General Purpose Analog & RF Division

Power Management

Quality and Reliability

5 TESTS RESULTS SUMMARY

5.1 Test vehicle

Lot #	Commercial product Rawline		Package	Product Line	
1					
2	ST1S40IPUR	RM3I*UA27DDF	VFDFPN 4x4x1.0 8L	UA2701	
3					

5.2 Test plan and results summary

Test	PC	Std ref.	Conditions	SS	Steps	SS		N	Note				
Test	FC	Stu lei.	Conditions	ss Sieps	Lot 1	Lot 2	Lot 3	Note					
Die Oriented	Die Oriented Reliability trials												
	150500			168 H	0/90	0/90	0/90						
HTSL	Ν	JESD22 A-103	Ta = 150°C	270	500 H	0/90	0/90	0/90					
		71100			1000 H	0/90	0/90	0/90					
Package Ori	ented F	Reliability trials				-	-		-				
PC	-	JESD22 A-113	Drying 24 H @ 125°C Store 168 H @ Ta=85°C Rh=85% Oven Reflow @ Tpeak=260°C 3 times	540	Final	Pass	Pass	Pass					
	AC Y JESD22 A-102 Pa=2Atm / Ta=121		Pa=2Atm / Ta=121°C		96 H	0/90	0/90	0/90					
AC				- Da_20.tm / La_121°(`		168 H	0/90	0/90	0/90	Eng. evaluation			
									100cy	0/90	0/90	0/90	
тс	Y	JESD22 A-104	Ta = -65°C to 150°C		500 cy	0/90	0/90	0/90	10 units submitted to decap and wire bond pull after 500cyc TC. Results: Passed (see below table for details).				
Package Ass	embly	Integrity trials											
WBP	-	M2011	30 wires, characterization	15	Final	Pass CPK>1.66	Pass CPK>1.66	Pass CPK>1.66					
WBS	-	JESD22-B116	30 balls, characterization	15	Final	Pass CPK>1.66	Pass CPK>1.66	Pass CPK>1.66					
Solderability	-	JESD22-B102	>95% lead coverage	5	Final	Pass	Pass	Pass					

6 ANNEXES

6.1 Pin connections

Please refer to product datasheet

6.2 Package Mechanical data

Please refer to product datasheet

General Purpose Analog & RF Division

Power Management

Quality and Reliability

7 TEST DESCRIPTION

Test name	Description	Purpose		
Die Oriented				
HTSL High Temperature Storage Life	The device is stored in unbiased condition at the max. temperature allowed by the package materials, sometimes higher than the max. operative temperature.	To investigate the failure mechanisms activated by high temperature, typically wire-bonds solder joint ageing, data retention faults, metal stress- voiding.		
Package Oriented				
PC Preconditioning	The device is submitted to a typical temperature profile used for surface mounting devices, after a controlled moisture absorption.	As stand-alone test: to investigate the moisture sensitivity level. As preconditioning before other reliability tests: to verify that the surface mounting stress does not impact on the subsequent reliability performance. The typical failure modes are "pop corn" effect and delamination.		
AC Auto Clave (Pressure Pot)	The device is stored in saturated steam, at fixed and controlled conditions of pressure and temperature.	To investigate corrosion phenomena affecting die or package materials, related to chemical contamination and package hermeticity.		
TC Temperature Cycling	The device is submitted to cycled temperature excursions, between a hot and a cold chamber in air atmosphere.	To investigate failure modes related to the thermo-mechanical stress induced by the different thermal expansion of the materials interacting in the die-package system. Typical failure modes are linked to metal displacement, dielectric cracking, molding compound delamination, wire-bonds failure, die-attach layer degradation.		
Other				
WBS Wire Bond Shear	A process in which an instrument uses a chisel shaped tool to shear or push a ball or wedge/stitch bond off the bonding surface. The force required to cause this separation is recorded and is referred to as the bond shear strength. The bond shear strength of a ball bond, when correlated to the diameter of the ball bond, is an indicator of the quality of the metallurgical bond between the ball bond and the die bonding surface metallization.	This test establishes a procedure for determining the strength of the interface between a ball bond and a package bonding surface. This strength measurement is extremely important in determining the integrity of the metallurgical bond which has been formed.		
WBP Wire Bond Pull	The apparatus for this test shall consist of suitable equipment for applying the specified stress to lead wire or terminal as required in the specified test condition. A calibrated measurement and indication of the applied stress in grams force (gf) shall be provided by equipment capable of measuring stresses.	The purpose of this test is to measure bond strengths, evaluate bond strength distributions, or determine compliance with specified bond strength requirements of the applicable acquisition document.		

General Purpose Analog & RF Division

Power Management

Quality and Reliability

CSAM Analysis

Before MSL1 (No delamination found)	After MSL1 (No delamination found)
Comment: No delamination observed.	Comment: No delamination observed.
After 100cyc of Thermal cycling -65C/150C	After 500cyc of Thermal cycling -65C/150C
Comment: No delamination observed.	Comment: No delamination observed.

General Purpose Analog & RF Division

REL.W.6088-876-2019

Power Management

Quality and Reliability

Wire Bond Pull after 500cyc of thermal cycling -65C/150C

EEV1908004 - Temperature cycle 500cycles (1.3 MILS)							
	ENGJ29A5		ENG	J29A6	ENGJ29A7		
Sample	Wire F	Pull (g)	Wire Pull (g)		Wire Pull (g)		
	Data	Mode	Data	Mode	Data	Mode	
1	16.574	D1	17.525	D1	17.116	D1	
2	17.867	D1	18.387	D1	18.252	D1	
3	18.657	D1	18.192	D1	18.111	D1	
4	17.24	D1	17.716	D1	16.24	D1	
5	17.4	D1	18.569	D1	18.14	D1	
6	17.645	D1	17.53	D1	17.967	D1	
7	17.181	D1	17.647	D1	17.545	D1	
8	18.817	D1	17.793	D1	17.754	D1	
9	18.236	D1	19.071	D1	18.472	D1	
10	16.163	D1	16.393	D1	16.115	D1	
11	18.455	D1	18.413	D1	18.39	D1	
12	17.697	D1	17.331	D1	18.088	D1	
13	17.596	D1	17.703	D1	17.472	D1	
14	19.887	D1 D1 D1 D1	18.285 18.488 17.404	D1 D1 D1	18.324 18.704 17.104 20.443	D1 D1 D1 D1	
15	18.994						
16	17.55						
17	15.219	D1	18.083	D1			
18	18,985	D1	17.313	D1	16.851	D1	
19	17.68	D1	17.536	D1	16.884	D1	
20	18.357	D1	18.048	D1	18.277	D1	
21	19.505	D1	18.202	D1	18.014	D1	
22	16.731	D1	15.905	D1	16.6	D1	
23	17.607	D1	17.942	D1	18.513	D1	
24	17.288	D1	17.76	D1	17.894	D1	
25	17.183	D1	17.216	D1	17.251	D1	
26	18.129	D1	18.112	D1	18.593	D1	
27	17.834	D1	18.947	D1	17.612	D1	
28	16.737	D1	16.841	D1	17.271	D1	
29	18.108	D1	17.602	D1	18.583	D1	
30	17.297	D1	17.5	D1	20.535	D1	
Maximum	19.89		19.07		20.54		
Minimum	15.22		15.91		16.12		
Spec Limit (L)	4.00		4.00		4.00		
Spec Limit (U)	-		-		-		
Mean	17.75		17.78		17.90		
Std. Dev.	0.98		0.68		1.00		

Note. Wire pull failure mode definition:

D1: wire break at neck D2: other than neck D3: lifted bond

D4: lifted weld

D5: lifted metal from die D6: lifted metal from lead D7: fracture on die (cratering)